Physical Properties of Materials

Fu-Rong Chen

text book: Electronic Properties of Materials

Rolf E. Hummel Department of Materials Science and Engineering University of Florida Gainesville, FL 32611 USA

PART I Fundamentals of Electron Theory

PART II Electrical Properties of Materials

PART III Optical Properties of Materials

PART IV Magnetic Properties of Materials

PART V Thermal Properties of Materials

Sunday, February 20,

Introduction

The electron theory of solid is capable of explaining the optical, magnetic, thermal, as well as the electrical properties of Materials.

Magnetic Property:-

electric generator, magnetic lens, motor, loudspeakers, transformers, tape recorder tape, magnetic disk **Optical Property:-**

Laser optical communication window lens optical coating solar collector reflector **Thermal Property:-**

refrigeneration heating device heat dissipation in LED heat shield for spacecraft **Electric Property:-**

conductor insulator semiconductor **Electron Theory**

- Continuum theory: macroscopic observation

refinement

- Classical electron theory: electron drifts through lattice atoms (Drude model, Newtonian Mechanics)

further refinement

 Quantum theory: Newtonian mechanics does not work in atom scale (~ lack vivid visulization of phenomena)

Sunday, February 20,

Electron Theory

- Continuum theory: macroscopic observation

refinement

- Classical electron theory: electron drifts through lattice atoms (Drude model, Newtonian Mechanics)

- Quantum theory: Newtonian mechanics does not work in atom scale (~ lack vivid visulization of phenomena) Newton's law: force equals mass times acceleration (F = ma); (1.1) Kinetic energy: $E_{kin} = \frac{1}{2}mv^2$ (v is the particle velocity); (1.2) Momentum: p = mv; (1.3)

Combining (1.2) and (1.3) yields
$$E_{kin} = \frac{p^2}{2m}$$
; (1.4)

Speed of light: $c = v\lambda$ (v = frequency of the light wave, and
 λ its wavelength);(1.5)Velocity of a wave: $v = v\lambda$;(1.6)Angular frequency: $\omega = 2\pi v$;(1.7)

Einstein's mass-energy equivalence: $E = mc^2$. (1.8)